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A particular exact solution of the transonic equation is considered as an exten- 
sion of Frankl’s solution [I] for the flow at some distance from the profile. The 
derived generalization defines the flow over some half-body of a gas stream 
at a velocity that is subsonic at infinity. 

The characteristics of a set are reflected from the sonic line and, being compres- 
sion waves after reflection, they begin to intersect at some point K inside a local 
supersonic zone forming the envelope (boundary line) with a cusp at point K. The 
distance of point K from the sonic line proves to be fairly small, and its magnitude 
may be used for evaluating the accuracy of numerical methods. 

The conclusion about shock wave formation not on the sonic line but inside a local 
supersonic zone was recently arrived at by a number of authors with the use of numeri- 

cal methods [2 - 41. 
Let us consider the approximate system of transonic equations 

uux = ??1J, uu = VX (1) 

where u and v are normalized dimensionless perturbation velocities of a uniform 

stream, and 5, y are Cartesian coordinates, 
An exact solution of Eq. (1) is 

CI (1 u= - cas3) + = 298 4 (2) 
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where s and t are parameters, and Cr, C, are arbitrary constants. This solution 
defines the flow in plane Lava1 nozzles with a local supersonic zone at its walls. Such 
flow was analyzed in [S]. Note that when C, = 0, a self-siinilar nozzle flow with 
linear distribution of the longitudinal velocity (u = Crx) on the axis y=O is 

obtained from (2). 
It can be shown that besides the solution (x, Y, u, 0) defined by formulas (2) there 

exists a multiplicity of solutions (xi, yi, u1 v) of Eq. (I), with 

generated by differentiation operators 
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a a 
x = Cl-Sk-’ h.s%C, a+4$(2+C,r?)~ as 

3 
k = (2 -+ Czs3)2 - 6ClsW 

(4) 

The proof is implied by the form of Eqs. (1) written in the hodograph plane uy, = 
xuut Yu = 50, and by the possibility of differentiating 3: and y with respect to the 
variable II for obtaining new solutions. 

For i = 2 we have 

as%& 16s%?la 
xa=w* %2= C15#l$ (5) 

aI = (C& + 2)3 (C.$ - 4) - C&t2 (C.&j f 2) (CsY - 32 C$+ 
40) - 18 C,2C,sY 

6, = (Css3 + 2)a (16 - C8) - 18 C1C,s6t2 

The respective potential cp is of the form 

=uur.J+vy,- 
4@ (2 + G#sa) 

g, C12k 
(6) 

b, ~1 = m&,v cp 

When Cs = 0 and C, = C,, = -2-*3-s5s , .Q, vs together with u, Y from 
(2) define the self-similar sohtion [l] with the limit characteristic 

xzyg*i* = 1. For fixed C1 and 
defined by 

C,#O, t=O,C#=-2 with the 
characteristic subsonic velocity 

ug = “/* c, (- c, I 2)“i” 

correspond to infinity in the xayp -plane. 
Let us consider the branch of solution (5), (6) which becomes a part of solution 

[l] which defines the flow ahead of the shock wave, as C, --, 0. For xs, and 

y,- 0 both flows (C’s = 0, C, # 0) asymptotically merge. The sonic line begins 
in the form of the generalized parabola 

faY8 -‘I* = 5-12’lS3B1* (C, = 2 Czl, C, = -0.09496) 

but, then, at y, c 22 turns abruptly downward creating a local supersonic zone. 
The condition v = 0 is satisfied only at yp = 0, .Q < 0,, while at ya = 0, xs > 0 

V=/=O. The top of the local supersonic zone is shown in Fig. 1 at the spot where a 
three-sheet fold is formed, The solid line represents the sonic line and the dash line 

corresponds to the Limit line I = 0, where I is the Jacobian of transormation 

D (x2, Ya)l %, 0. 
The limit line consists of two branches one of which has a common vertical tang- 

ent with the sonic Line. Thecontinuation of this branch downward brings it to the 

coordinate origin, and the second branch asymptotically approaches the axis ~2 = 0 

with x2 > 0. The cusp K of the limit line lies inside the local supersonic zone, 

its distance from the sonic line along the straight line y = 9~ is AX = 0.01 which 

is small as compared to the over-all zone height Ahh N, 22. 
If the solution has to have any physical meaning, it is necessary to construct the 

shock wave which would eliminate the amb~~ity of solution in the physical plane. 
In the considered class of solutions it is impossible to satisfy along a single curve the 
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Fig. 1 

two conditions of continuity of 

the potential and of the polar line. 
However the formation of a 

fold within a local supersonic zone, 
as shown by the above example, 
supports the argument in favor of 
the possibility of shock wave origin- 
ation inside that zone. Thus, if 

one considers the streamline pass- 
ing slightly below point K as a 
solid wall, then, taking into acc- 

ount the shock wave weakness, one 

must expect its appearance as 

close to point K, as desired, 
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